If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-5t-0.5=0
a = 4.9; b = -5; c = -0.5;
Δ = b2-4ac
Δ = -52-4·4.9·(-0.5)
Δ = 34.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{34.8}}{2*4.9}=\frac{5-\sqrt{34.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{34.8}}{2*4.9}=\frac{5+\sqrt{34.8}}{9.8} $
| 450+40m=975+45.45m+19.55m | | x/3−300=250 | | 2/3x+9=-2 | | 8x+1=6x−2 | | 21=0+4x | | 5x+17≥=52 | | 72+(5x+13)=180 | | 27=5+x/8 | | 7+4x2-3=19 | | 28=0+x/3 | | 5(x-4)=6(x+1) | | 31=1+5x | | (7x+10)+(6x-12)=180 | | (15x+11)+(5x+69)=180 | | 16=4p+5p-11 | | (4x+30)+(4x+110)=180 | | 2x8=25-() | | (13x-44)+(12x-1)=180 | | -10=k+9 | | 3f-7=57 | | 9a+15+3a=15 | | -7=r-15 | | (x+41)+(3x+43)=180 | | 6v+16=10v-8 | | 9=c-10 | | 180-(3x+43)=x+41 | | 6v+16=10v–8 | | j+9=-3 | | -5x-7=-x | | (52-2x)+(22x+88)=180 | | 2b+5=b-5 | | (131-2x)=(6x+67) |